

Halogen-Free Flame Retardant Systems for EP-Based PWB's

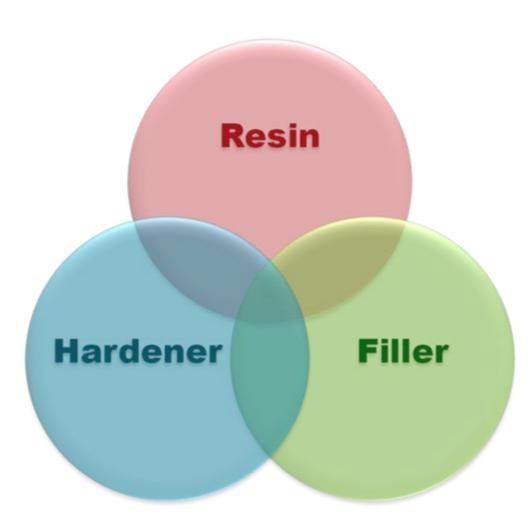
Dr. M. Dietz, Clariant Produkte (D) GmbH, Germany Dr. C. W. Ihmels, Nabaltec AG, Schwandorf, Germany

Electronic Goes Green 2008, Berlin September ,9th 2008

Content

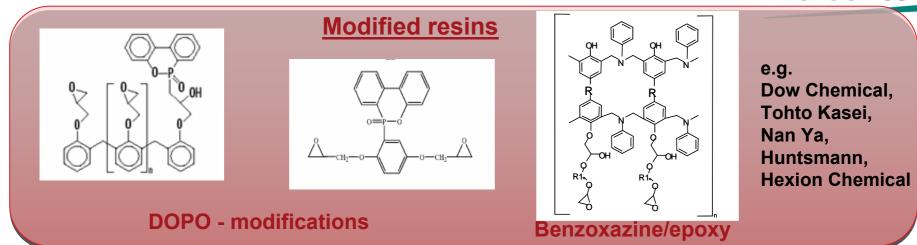
- Short overview on halogen free FR's for EP
- Technical challenge to use filler type FR's
- Example: Apyral[®] AOH as highly temperature stable mineral filler with FR functionality
- Example: Exolit[®] OP as highly effective Pbased FR
- Conclusions

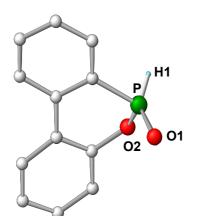
Content


3

- Short overview on halogen free FR's for EP
- Technical challenge to use filler type FR's
- Example: Apyral[®] AOH as highly temperature stable mineral filler with FR functionality
- Example: Exolit[®] OP as highly effective Pbased FR
- Conclusions

Ways of Incorporating FR in EP

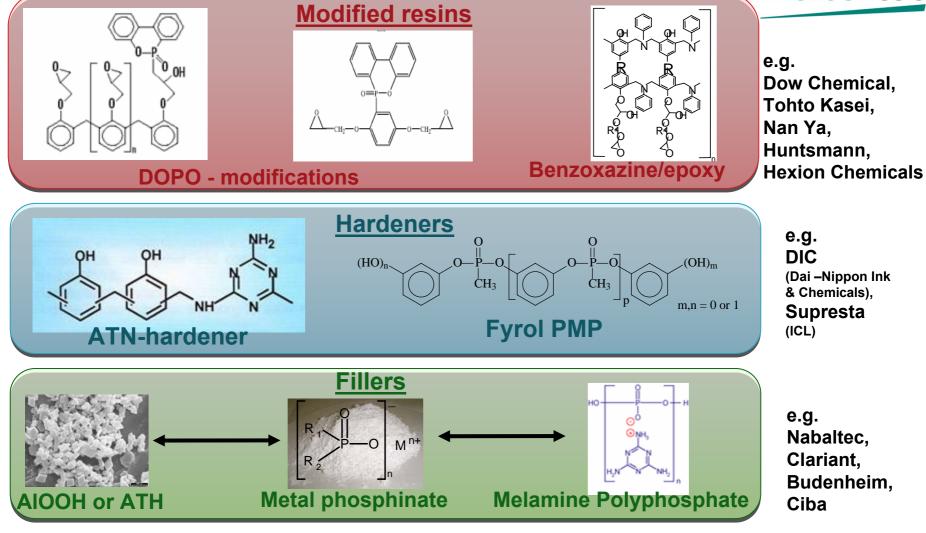

4



Electronic Goes Green 2008, Berlin September ,9th 2008

Possible Combinations of HFFR

"Phosphaphene-anthrene-oxide"


14% Phosphorous

- + P in polymer chain
- high price
- influence on resin prop., e.g.
 - lowers T_a
 - increases water uptake

Possible Combinations of HFFR

Combination of these HFFR's give a wide range of possibilities to optimize base material for each application

Halogen-Free FR for PCB's

Technical requirements to FR system and base laminate

Thermal properties	Mechanical properties
No bubbles or delamination after PCT	High Copper peel strength
No decomposition or delamination during soldering	High inner laminate adhesion
low CTE	
High Tg-level of base laminate	
Electrical properties	Proccessing
Good electrical properties (Dk, Df)	Good chemical resistance against acid, alkali and oxidative substances
No propensity for migration (CAF testing)	Suitable resin flow of prepregs
Low water uptake	Acceptable prepreg surface

Electronic Goes Green 2008, Berlin September ,9th 2008 Folie 7

Content

8

- Short overview on halogen free FR's for EP
- Technical challenge to use filler type FR's
- Example: Apyral[®] AOH as highly temperature stable mineral filler with FR functionality
- Example: Exolit[®] OP as highly effective Pbased FR

Conclusions

Halogen-Free FR for PCB's

<u>Technical Challenge</u>: Usually, a combination of different compounds is necessary to match the requested properties.

<u>Traditional varnish</u> <u>composition</u>

- 4 component system:
 - epoxy resin (brominated)
 - curing agent
 - Accelerator
 - solvent

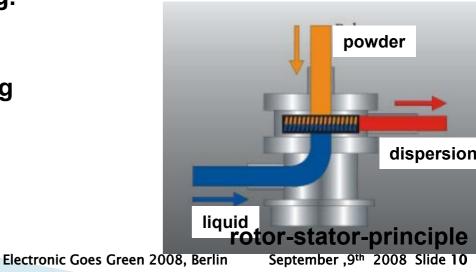
Varnish bath (halogen-free)

- > 6 components system
- new epoxy resin ?
- new curing agent ?
- new accelerator ?
- flame retardants ?
- fillers ?
 - processing additives?
- solvent

Challenge - the varnish bath must be completely reformulated, and individual components optimized to customer requirements. No industry standards - Each customer with own recipe, tests & requirements

Processing of Filler Type FR

Incorporation into acetone, MEK, etc. as solvent is preferred



use a high-speed dissolver for good dispersion

Additives can improve dispersion, air release, and stability (anti-settling)

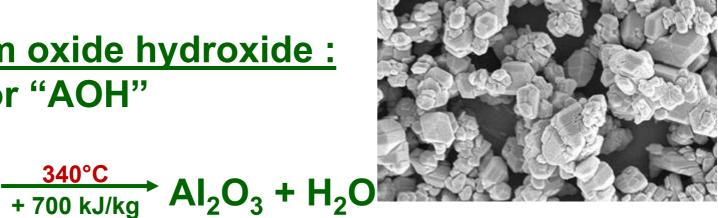
State of the art : Inline dispersion machines, eg. YSTRAL Conti-TDS, NETZSCH Psi Mix, ... for dust-free induction, wetting and dispersing of powders into a liquid.

Content

- Short overview on halogen free FR's for EP
- Technical challenge to use filler type FR's
- Example: Apyral[®] AOH as highly temperature stable mineral filler with FR functionality
- Example: Exolit[®] OP as highly effective Pbased FR

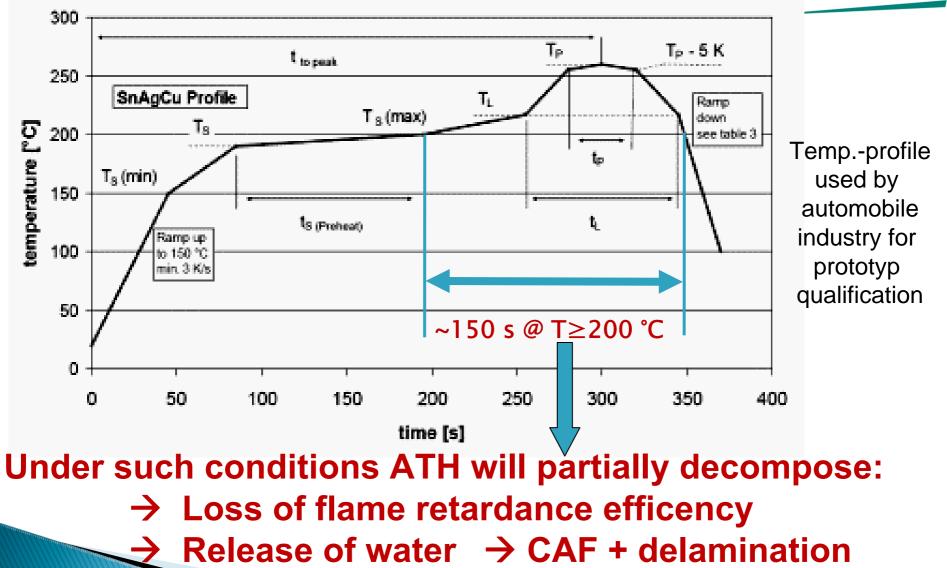
Conclusions

ATH as FR Filler?

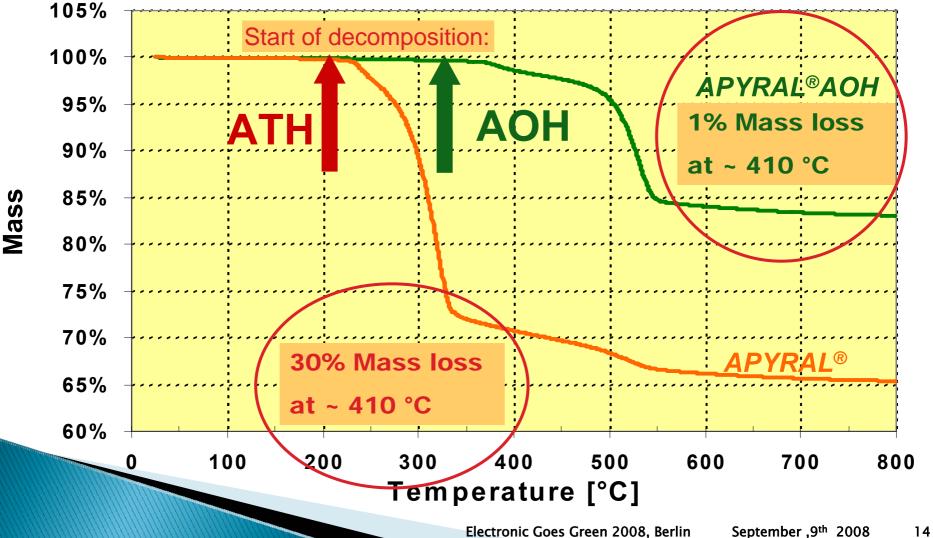


<u>Aluminium hydroxide :</u> Al(OH)₃ or "ATH" **APYRAL[®]** $2AI(OH)_3 \xrightarrow{200^{\circ}C} AI_2O_3 + 3H_2O$

High heat resistance is required for modern lead free soldering !!!!


Aluminium oxide hydroxide : AIO(OH) or "AOH"

2AIOOH


Temp. – Profile of Lead Free Soldering Nabaltec

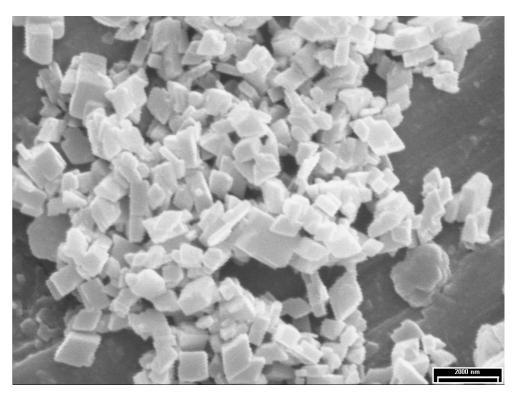
TGA–Diagramms : T–Stability of ATH vs AOH

TGA : ATH vs AOH

APYRAL® AOH – Synergist for P–Containing FRs

Necessary amount of FR to fulfill UL94 V0 in novolak epoxy

Flame retardant	Content [% w/w]	T _g (DSC) [°C]	resin: DOW DEN 438 hardener:
Metal phosphinate	16,7	167	dicyandiamide
Oligomeric Aryl phosphonate	23,5	165	accelerator: fenuron thickness: 4,0 mm
DOPO-HQ	17,0	161	
DOPO	6,5	158	no glass fiber Tg 180 °C
DOPO + APYRAL® AOH 30	2,9 + 30	168	


→ Significant reduction of expensive DOPO

Significant Increase of Tg

Advantages of APYRAL® AOH

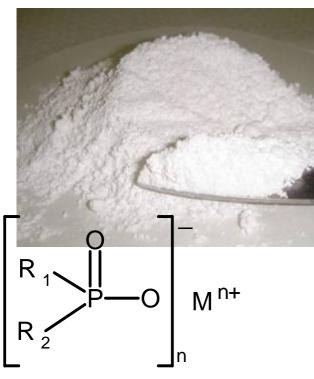
- Positive influence on
- •T_g
 •copper peel strength,
 •laminate adhesion
 •extremely low CTE reported
 (36 ppm (RT-T_a) !)
- T-stable up to 340 °C !!
- No corrosive & toxic gases
- Smoke reduction effect
- Low price
- high load for FR necessary, better to use as synergyst to P-/N-based FR

APYRAL® AOH available from

7 μm to 300 nm (typically 1 μm) (mean diameter)

Ultra-thin applications possible

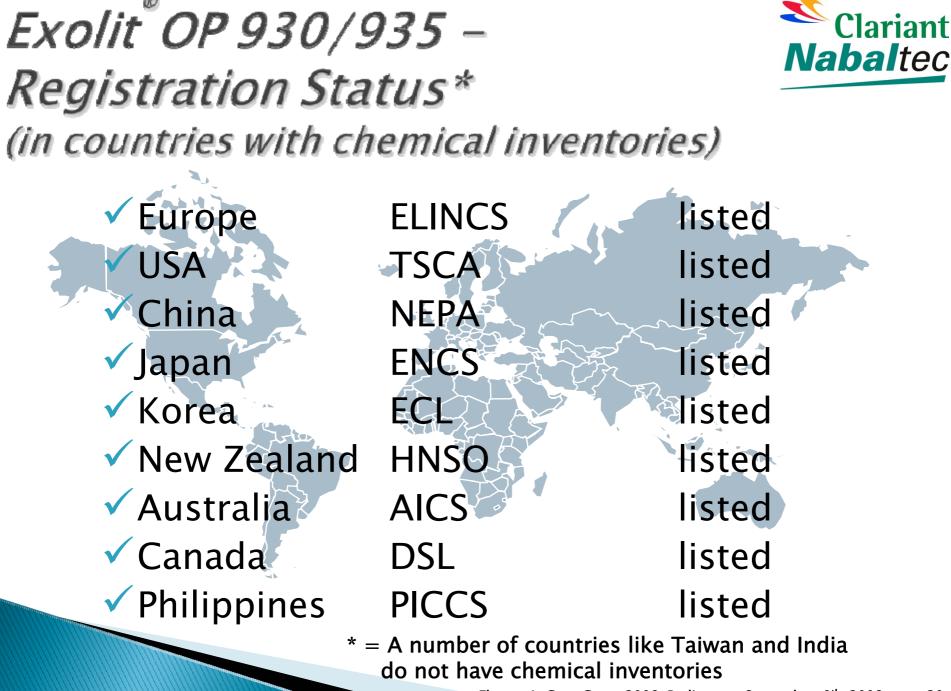
Content


- Short overview on halogen free FR's for EP
- Technical challenge to use filler type FR's
- Example: Apyral[®] AOH as highly temperature stable mineral filler with FR functionality
- Example: Exolit[®] OP as highly effective Pbased FR

Conclusions

Exolit[®]OP 930/OP 935 – Product characteristics

Exolit[®] OP 935


- New class of flame retardants
- based on phosphinate chemistry
- Additive flame retardant (not reactive)
 - fine grained white powder
 - high P-content (23-24%)
 - non toxic, no hazard labels
 - behaves like a filler
 - Mohs hardness: < 3</p>
 - good thermostability (decomposition above 300°C)

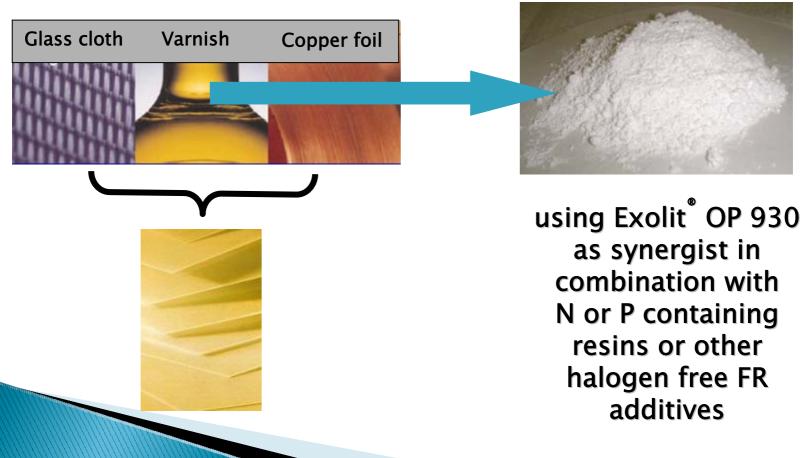
Exolit® OP 930/935 – Toxicological and Ecotoxicological Properties Exolit[®] OP :

- is non-toxic
- there is no need for labelling it as a hazardous substance (threshold $LD_{50} = 2000 \text{ mg/kg}$)
- has no potential for bioaccumulation
- has a very low aquatic toxicity and does not have to be labelled for ecotoxic effects ! (threshold LD50 = 100 mg/L)

Exolit®OP – Efficiency as FR material

Flame retardant	Content [% w/w]	P- Content [% w/w]	T _g (DSC) [°C]
Metal-phosphinate	10.0	2.4	168
MPP + P-synergist (1:1)	8.0	0.8	179
DOPO-HQ	17.0	1.4	161
DOPO	6.5	0.90	158
DOPO +	2.9 +	0.40	169
APYRAL [®] AOH 30	30		168

Exolit®OP more effective like DOPO-HQ


Necessary weight content of different halogen-free flame retardants in an epoxy novolac

for the classification according to UL94-V0

(resin: DOW DEN 438; hardener: dicyandiamide; accelerator: fenuron; thickness: 4,0 mm; no glass fiber)

Role of Exolit® OP 930 in rigid base material anufacturing

Electronic Goes Green 2008, Berlin September ,9th 2008 22

Exolit®OP 930 for halogen free rigid FR-4 boards

- first formulations have been successfully developed and positively tested throughout the supply chain
- halogen free laminates containing Exolit OP 930 are already available on the market or are currently being introduced.

Environmentally Friendly, Lead-Free Compatible, FR-4 Epoxy with a Tg of 165°C

OP 930 inside

Property	
Tg (DSC)	165°C
Td (TGA 5% weight loss)	425°C
T260	> 30 min
Z-Axis Expansion (50°C-Tg)	65 ppm/°C
Z-Axis Expansion (Tg-260°C)	250 ppm/°C
Dk @ 10 GHz	3.8
Df @ 10 GHz	0.016
Flammability (UL 94)	V-0

Exolit®OP 935 in non rigid FR-4 Clariant *applications*

Exolit OP 935 has been also released for

- a) adhesive formulations used in flexible printed circuits based on polyimide-copper
- b) formulations used in epoxy moulding compounds (EMC)

and resist inks

Environmentally friendly adhesive formulation

Property	
Adhesive thickness	18 µm
Peel Strength (after solder float)	1.4 kN/m
Solder resistance (288°C, 10 min)	pass
Dk @ 1 GHz	3.2
Df @ 1 MHz	0.02
Flammability (UL 94)	VTM-0

Conclusions

- Halogen-free FR can be used as additive, resin or hardener in a varnish formulation
- A wide range of materials of halogen-free technologies are currently available and further research is expected to result into new raw materials
- This include FR additives, as well as resin backbones
- Both additives and resins have different mechanical and electrical properties
- This offers an increasing wide range of CCL properties, which makes it easier to find suitable halogen-free alternatives for different applications and markets segments.
- Apyral® AOH and Exolit® OP filled base laminates are available or are being currently introduced into the market

Invitation

Please visit us at our booth

Halogen-free Flame Retardants

A growing toolbox of materials is

in E&E Applications

becoming available

Free HFFR–brochure available !!!

Budenheim

Budenheim Iberica Extramuros, S/N 50784 La Zaida/Zaragoza Spain Phone: + 34 976 1784 12 Email: budenheim@budenheim.es www.budenheim.es

ammonium polyphosphates (FR CROS®) melamine phosphates (Budit) melamine polyphosphates (Budit[®]) melamine cyanurates (Budit[®]) intumescent systems (Budit)

Ciba Inc. CH - 4002 Basel Switzerland Phone: + 41 61 63 64 000 Email: melapur@ciba.com

melamine phosphate (Melapur® MP) melamine polyphosphate (Melapur® 200) melamine cvanurate (Melapur® MC) NOR HALS (Flamestab® NORTM 116)

metal phosphinates (Exolit[®] OP)

red phosphorus (Exolit[®] RP)

flame retardants

ammonium polyphosphate (Exolit[®] AP)

Research and Developement halogen-free

schungszenizum Karjaruhe ser Helmholtz-Gemeinschoft

Ciba

Clariant International Ltd. MS Flame Retardants Rothausstr. 61, CH - 4132 Muttenz 1 Phone: +41 61 469 7974 Fax: +41 61 469 7577 e-mail: adrian.beard@clariant.com www.exolit.com

Karlsruhe Research Centre Institute for Technical Chemistry (ITC-CPV) PO-Box 3640, 76021 Karlsruhe Germany Phone: +49 7247 82 4385 Fax: +49 7247 82 2244 Email: manfred.doering@itc-cpv.fzk.de www.fzk.de/itc-cpv.de

LANXESS Deutschland GmbH LANXESS

Nabaltec AG

Fax: +49 9431 61557

E-Mail: fillers@nabaltec.de

BU Functional Chemicals 41538 Dormagen Germany Phone: +49 2133 51 23788 Fax: +49 2133 51 23323 www.phosphorous-chemicals.com triphenyl phosphate (Disflamoll TP) cresyl diphenyl phosphate (Disflamoll DPK®)

aluminium hydroxide (Apyral®) boehmite (Apyral® AOH) Alustraße 50 - 52, 92421 Schwandorf magnesium hydroxide (Apymag[®]) Phone: +49 9431 53-458 /-462/-467 blend of aluminium & magnesium hydroxides (Apymag[®] AOH)

Nabaltec

Supresta LLC Hoefseweg 1, 3821 AE Amersfoort The Netherlands www.supresta.com

poly(1,3-phenylene methylphosphonate) (Fyrol PMP*) resorcinol bis (diphenyl phosphate) (Fyrolflex RDP) bis-phenol A-bis (diphenyl phosphate) (Fyrolflex BDP®)

